Closed form solution of Eigen frequency of monopile supported offshore wind turbines in deeper waters incorporating stiffness of substructure and SSI
نویسندگان
چکیده
Offshore wind turbines (OWTs) are dynamically loaded structures and therefore the estimation of the natural frequency is an important design calculation to avoid resonance and resonance related effects (such as fatigue). Monopiles are currently the most used foundation type and are also being considered in deeper waters (430 m) where a stiff transition piece will join the monopile and the tapered tall tower. While rather computationally expensive, high fidelity finite element analysis can be carried to find the Eigen solutions of the whole system considering soil–structure interaction; a quick hand calculation method is often convenient during the design optimisation stage or conceptual design stage. This paper proposes a simplified methodology to obtain the first natural frequency of the whole system using only limited data on the WTG (Wind Turbine Generator), tower dimensions, monopile dimensions and the ground. The most uncertain component is the ground and is characterised by two parameters: type of ground profile (i.e. soil stiffness variation with depth) and the soil stiffness at one monopile depth below mudline. In this framework, the fixed base natural frequency of the wind turbine is first calculated and is then multiplied by two non-dimensional factors to account for the foundation flexibility (i.e. the effect of soil–structure interaction). The theoretical background behind the model is the Euler–Bernoulli and Timoshenko beam theories where the foundation is idealised by three coupled springs (lateral, rocking and cross-coupling). 10 wind turbines founded in different ground conditions from 10 different wind farms in Europe (e.g. Walney, Gunfleet sand, Burbo Bank, Belwind, Barrow, Kentish flat, Blyth, Lely, Thanet Sand, Irene Vorrink) have been analysed and the results compared with the measured natural frequencies. The results show good accuracy (errors below 3.5%). A step by step sample calculation is also shown for practical use of the proposed methodology. & 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
منابع مشابه
The Effect of Lateral Loading Parameters on Monopile Behavior Based on Physical Modeling
Monopiles are the most common type of foundation for offshore wind turbines (OWT). Monopiles have been used in more than 80% of the offshore wind turbines. A monopile will be affected by millions of lateral load cycles during the operating period, which will cause its rotation and lateral deformation. The rotation and the deformation are dependent on the soil properties, monopile specification,...
متن کاملEvaluation of Turbulence on the Dynamics of Monopile Offshore Wind Turbine under the Wave and Wind Excitations
In recent years, the use of offshore wind turbines has been considered on the agenda of the countries which have a significant maritime boundary due to more speed and stability of wind at sea. The aim of this study is to investigate the effect of wind turbulence on the aero-hydrodynamic behavior of offshore wind turbines with a monopile platform. Since in the sea, the wind turbine structures ar...
متن کاملAn Investigation into the Effect of Scour on the Loading and Deformation Responses of Monopile Foundations
Severe foundation scour may occur around monopile foundations of offshore wind turbines due to currents and waves. The so-called p-y curves method is suggested in the existing design recommendations to determine the behavior of monopiles unprotected against scour and the reduction of effective soil stress is accounted for by the extreme scour depth. This conservative design approach does not co...
متن کاملHelical piles: an innovative foundation design option for offshore wind turbines.
Offshore wind turbines play a key part in the renewable energy strategy in the UK and Europe as well as in other parts of the world (for example, China). The majority of current developments, certainly in UK waters, have taken place in relatively shallow water and close to shore. This limits the scale of the engineering to relatively simple structures, such as those using monopile foundations, ...
متن کاملFoundation damping and the dynamics of offshore wind turbine monopiles
The contribution of foundation damping to offshore wind turbines (OWTs) is not well known, though researchers have back-calculated foundation damping from “rotor-stop” tests after estimating aerodynamic, hydrodynamic, and structural damping with numerical models. Because design guidelines do not currently recommend methods for determining foundation damping, it is typically neglected. This pape...
متن کامل